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Abstract. One of the challenging issues in software designing is testing
the product in different condition. Various software Oracles had sug-
gested in the literature, and the aim of all of them is minimizing the
time and cost of the testing process. Software test Oracles have designed
to do this job automatically with as less as possible human contribution.
In this work, a novel Oracle based on deep learning and fuzzy inference
system introduced. For this purpose, by the utility of Takagi-Sugeno-
Kang fuzzy inference, the output of software mapped to the fuzzy space,
and the deep neural network has trained by this data. Finally, data has
remapped to the primary form and used as the competitor stage input.
To validate the performance of the Oracle, four different models have cho-
sen to assess the Oracle enforcement, and after training the Oracle by
the correct output of applications, source codes have changed manually,
and the efficiency of the Oracle monitored. Several measures have been
applied to evaluate the accuracy of the test Oracle, and it is observed
that in most cases Oracle correctly could detect the correct and false
results. Finally, designing Oracles requires several preliminaries and in
this work we only focus on the architecture of the system.

Keywords: Software testing · Deep learning · Oracle problem · TSK
fuzzy inference system

1 Introduction

Software testing is a vital part of software technology to test the quality and
reliability of computer programs under various conditions. Since human-based
software testing requires too much time and energy resources, complete testing
of software in limited time is impossible. For this purpose, automatic testers have
been suggested to decrease the cost of this process [3]. Oracles have widespread
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applications in testing different kinds of software, such as web search engines,
embedded software and video games [5,6,10].

A test oracle is a mechanism to assess the performance of the software. It
is a valid source to study the operation of the under-test software [25]. It also
generates different test cases considering software specification, and evaluate
the actual behaviour of software [16]. Test oracles are useful in forming the
automated software testing platform.

To assess the correctness of the under-test software, after the result gener-
ation process, Oracle should compare the generated results by software with
correct results. It is conventional to call produced results using under-test soft-
ware as actual outputs, and the correct results which are utilized to verify actual
output known as expected outputs [25]. To check the actual outputs, Oracle has
to find suitable expected outputs; this process of finding proper expected outputs
mostly known as oracle problem [1].

The function of an arbitrary test oracle to evaluate test results starts with
the generation of expected outputs. The second step is executing the test cases.
In the next stage, the initial domain should be mapped to the expected outputs,
and corresponding actual outputs for each expected output should be specified.
Finally, actual outputs compare with expected outputs to find out whether the
behaviour of the software is accurate or not [20]. Although test oracles designed
to tackle all of these stages, in most studies oracles are used to test the execute
cases only.

The aim of test oracles is tackling the software testing process with as less as
the human contribution. However, this process faces several challenges in each
automation activities steps [18,20]. The preliminary challenge in software testing
is automatic data generation, and Oracle should provide proper output results
automatically. Another challenge is that Oracle should provide expected results
of the corresponding software inputs, and this is impossible without correct
automatic mapping between input domain and output domain. The last issue in
Oracle function is making the decision about which actual outputs are acceptable
and which results should be considered as a fault [19].

In this study, we focus on forming a precise oracle by taking advantage of
deep learning and fuzzy logic. For this purpose, by using Takagi-Sugeno-Kang
(TSK) structure, a sufficient number of software inputs and their corresponding
expected outputs have been encoded to the fuzzy space [21,23]. By utility of
these data, a deep neural network has trained. This network with cooperation
with fuzzy encoder-decoder performs our target Oracle.

2 Backgrounds

In the year of 1965 fuzzy logic has been suggested by prof. Lotfi A. Zadeh to
cover the inabilities of the classical logic [27]. In this framework instead of using
1’s and 0’s to evaluate the value of parameters, variables can have a value in
the spectrum domain between 0 and 1 [26]. To assign a spectrum value to each
variable, the Fuzzy Inference System (FIS) is using for mapping the value of data
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from binary space to fuzzy space. There are several FIS methods for mapping
to fuzzy space, however, in action, only two FIS techniques are favourable which
are TSK and Mamdani fuzzy models [13,17].

There are several differences between the TSK and Mamdani fuzzy struc-
tures. Computational cost is the main difference between these two structures.
While Mamdani fuzzy model by computing the whole membership function,
TSK model use simple formulas to computing the output. This feature of TSK
structure makes it more useful FIS technique rather than the Mamdani model.

On the other hand, deep learning as a multilayer neural network with self-
relying ability in feature extraction plays a crucial role in the prediction of sys-
tems’ behaviour [11]. The range of deep learning applications covers a vast area
of engineering and scientific topics, such as object detection, image classifica-
tion and web search engines [4,7,8]. A deep neural network by the utility of
several inputs and their corresponding output get trained and after the training
procedure, can precisely predict the results of the system for arbitrary inputs.

Adaptive-network-based fuzzy inference system (ANFIS) is the most famous
form of using the fuzzy logic in the neural networks. ANFIS is a kind of arti-
ficial neural network based on the TSK fuzzy inference system. This network
has suggested by prof. Roger Jang in the early 1990s [9]. Since ANFIS uses the
advantages of neural networks and fuzzy logic simultaneously, it has the capa-
bility of dealing with a wide range of problems like the prediction of nonlinear
functions.

3 Methodology

In this study, with the integration of the advantages of deep learning and fuzzy
inference system, it is tried to perform more efficient and accurate software test
Oracle. Figure 1 shows the structure of the Oracle with containing two main
stages which are Fuzzy encoder-decoder and deep neural network. The former
stage by the utility of TSK structure maps the I/O of the under-test software
to 0 to 1 and reverse it at the end of the Oracle structure. The latter stage uses
these data to train and test of the deep neural network as the core of the Oracle.
In the following context, each step will be discussed in detail.

3.1 Fuzzy Encoder-Decoder

Various fuzzy inference system has been suggested in the literature, however,
most of the fuzzy reasoning can be classified into three main categories. Amongst
these categories, Takagi and Sugeno fuzzy inference which uses a linear combina-
tion of input variables plus a constant term, is more functional than other infer-
ences [12,22]. To have a better understanding of the TSK mechanism, firstly this
inference is discussed for two input and the single output, and then the formula
for multi-input-single-output (MISO) TSK model will be posed.

A conventional form of TSK fuzzy structure with two inputs and single out-
put express as:
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Fig. 1. Schematic Oracle structure

if x1 is Ai and x2 is Bi then y is yi (1)

Where in the Eq. 1, Ai ∈ {A1, ..., ANA} and Bi ∈ {B1, ..., BNB} represents the
antecedent MF of the ith rule that belongs to the input variables x1 and x2

respectively. The sets {A1, ..., ANA} and Bi ∈ {B1, ..., BNB} are pre-defined
antecedent MFs. The ith rule produces a partial output form which shown as:

yi = fi(x1, x2) (2)

Where fi are pre-defined functions in this study:

fi(x1, x2) = ri (3)

And the ri = constant, therefore characterizing a crisp consequent MF for
the ith rule. Aggregation the partial outputs of each rule, the output is given by:

f =
w1y1 + w2y2

w1 + w2
(4)

Where wi = AND(μAi(x1), μBi(x2)) is the weight of the ith rule. The infer-
ence procedure has shown in the Fig. 2:

The mechanism of TSK inference system with two input and a single output
for a better understanding of the operation of this model. However, it is notice-
able that in this study all of the computations have conducted using MISO
framework of TSK model. Since the schematic diagram of the MISO model and
the governing equations are more complicated than the discussed model, in the
following lines governing equation present briefly as:

Ri = if x1 is ˜A11 and(or) ... xm is ˜A1m then y = g(x1, ...xm) (5)

Where m is the number of input variables, R is the fuzzy rule, ˜Aij is the fuzzy
set corresponding to ith input variable for jth fuzzy rule and gi is a function is
defying as follow:

g(x1, x2, ..., xm) = q + q1x1 + ... + qmxm (6)
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Fig. 2. ANFIS structure with two input variable

And finally, the fuzzy system can be described as follow:

y =

R
∑

i=1

gj(.)Tmi
j=1μij(xj)

R
∑

i=1

Tmi
j=1μij(xj)

(7)

Where μij is membership function for the Aij fuzzy set, and mi(1 < mi <
m) and T the number of inputs to the fuzzy inference and T-norm operator
respectively.

After mapping the inputs by using Eqs. 5, 6 and 7 to fuzzy space, an n-
dimensional hyperspace form by input variables and their output value con-
ducted by FIS. To have a better understanding of the relationship between fuzzy
inputs and outputs, a hyper-surface fit to these points in a way that contains
as more as possible of points. Since digital computers and especially deep learn-
ing algorithm cannot accept a continues parameter as input, this hyperspace
has discretized into several smaller hyper-surfaces. Each hyper-surface contains
some of the fuzzy variables, and obviously, by increasing the number of this
sub-hyper-surfaces, the precision increase and it is easier to define which point
belongs to which element. Although increasing the number of elements in this
stage increase the precision, since this sub-hyper-spaces were used as the learning
input parameters in the deep learning module, it could be causing the over-fitting
in the learning procedure. For this reason, it is significant to find optimum size of
these elements which have been done by several experiments in this study. Sam-
ple model of hyper-surface and its discretization, and increasing the precision by
increasing the number of elements in 3D fuzzy space is shown in Fig. 3.

behzad.zakeri@ut.ac.ir



Software Test Oracle Based on DNN with FIS 411

(a) Weak discretized fuzzy surface (2D) (b) Fine discretized fuzzy surface (2D)

(c) Weak discretized fuzzy surface (3D) (d) Fine discretized fuzzy surface (3D)

Fig. 3. Schismatic view of fuzzy space

3.2 Deep Learning

In this section, deep neural network as the core of the Oracle has described, and
the governing equations of the deep learning algorithm have discussed.

The deep neural network architecture has divided into three main layers
which are the input layer, hidden layer and output layer. Input layer receives the
mapped data from the fuzzy inference and delivers them to the hidden layers.
Hidden Layers by processing data try to fund the relation among data, and
finally, the output layer reports the outputs of the user.

To study the governing equation for an arbitrary hidden layer, all the equa-
tions govern the lth layer have been driven as follow:

Z [l] = W [l] ∗ A[l−1] + B[l] (8)

A[l] = g[l](Z [l]) (9)

Where in this network W [l] is the weight matrix which links the layer l to
the layer l − 1, and w

[l]
ij is the weight between neuron i in layer l and neuron j

in the layer l − 1. Also B[l] is equal to bios vector for layer l.
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In Eq. 9, A[l] is a the output matrix for layer l and g[l] is the activation
function which employed in the calculations. The function g[l] is the utilized
activation function in the l’th layer the activation function which used in the
hidden layer is function of LeakyRelu which are explained as follows:

LeakyRelu(x) =
{

x, x > 0
x ∗ 0.001, x ≤ 0 (10)

Firstly, the values of W will be randomly chosen between 0 to 1 and then the
values of B will be considered zero. The main purpose of learning model method
is to decrease the error function.

min J
W,B

(W,B) (11)

J(W,B) =
1
m

‖Y ′ − Y ‖22 (12)

Where Y ′ and Y are the estimated value and the expected value which is
extracted from the case studies. To prevent the Overfitting in this part, the error
function was changed as follows:

J(W,B) =
1
m

‖Y ′ − Y ‖22 +
λ

2m
‖W‖22 (13)

J(W,B) =
1
m

∗ (Y ′ − Y )T (Y ′ − Y ) +
λ

2m
WTW (14)

By conducting the discussed method, the deep neural network has been trained
to predict the test cases results.

4 Results

In this part, it is tried to evaluate the performance of the discussed test oracle
in action. Due to this, four different software has been used as our case studies
which each one has specified features. By utility of these case studies, numerous
test case were generated for training and testing the Oracle. After the train-
ing process, by using the generated test cases, the accuracy of the Oracle has
assessed.

4.1 Case Studies

One of the significant issues in test Oracles is the ability to tackle with unknown
source codes. For this purpose, four source codes have been chosen from www.
codeforces.com. This web site is a host for competitive programming contests
and contains more than 10 million source codes with various scopes.

Our case studies have written in Java and C++ languages, and the I/Os of
these codes are in the numeric form. To the study of the complexity of these
codes, two criteria were used. The first criterion is the number of the programs’

behzad.zakeri@ut.ac.ir

www.codeforces.com
www.codeforces.com


Software Test Oracle Based on DNN with FIS 413

code lines. The other criterion is Cyclomatic Complexity (CC) which is a stan-
dard programming measure based on the independent paths of the programming
system. This criterion makes it possible to measure the complexity of arbitrary
source code [24]. Table 1 summarizes all of the test cases features as follow:

Table 1. Specifications of test cases

# Name # code’s line # Input parameter CC Code’s Language

1 Polyline 202 6 37 Java

2 Really Big Number 277 2 56 C++

3 Magic Number 368 4 31 Java

4 Karen & Neighborhood 256 2 29 C++

4.2 Oracle Evaluation

To train the Oracle for each case study 30K test case have generated. Producing
of these data for each case study by considering the boundary of the case and
utility of adaptive random data generation method has been done [2]. Also, 5K
data with the same method have generated for testing purposes. For labelling
these data, they considered as the input of the source code of each case study.
Since the generation of a large amount of data is quite hard, it had forced us to
generate the under-qualified number of data, and for filling this gap, we train
the Oracle model with the same data iteratively with at least 500 iterations for
each case study.

To analysis, the error value of the Oracle model for each case study, mean
square error (MSE ) formula has employed. The mathematical description of
MSE become as follow:

MSE =

n
∑

i=0

(yi − y′i)
2

n
(15)

Where n is the total number of data, and y and y′ are expected and actual
results respectively.

The following figures demonstrate the error value of each individual case
study Fig. 4. Looking at the figures in more detail, in each case study by increas-
ing the training iteration, the MSE value decreases considerably. It is also notice-
able that the error value after a specified iteration converges to the certain value,
and after that, by increasing the iteration the MSE value fluctuate around that
value.

4.3 Assessment of Fault Detection

The aim of the Oracle is finding the existing errors in the under-test software.
Meaning that for each test case certify that whether the output of the software is
similar to the expected result (Oracle output) or not. To evaluate the function of
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(a) Polyline (b) Really Big Number

(c) Magic Number (d) Karen & Neighborhood

Fig. 4. Error per number of iteration

the Oracle, the software source codes were manipulated manually, and for each
source code, one line of each code perturbed as follow:

As it is shown in the Table 2, by changing the source code of each program,
expected results changes consequently. For instance, in the case of the Polyline
program, 617 case of expected results out of 5K test data have been under the
influence of our perturbation.

The main task of Oracle is distinguishing between changed and unchanged
results. Due to this, the following parameters define as follow:

– True Positive (TP) is the number of test cases which their results have
changed, and Oracle could find this change correctly.

– True Negative (TN) is equal to the number of test cases that did not change,
and Oracle could figuring out this remain.

– False Positive (FP) define as the number of test cases that did not change,
but Oracle knew them as changed cases.

– False Negative (FN) is the test cases that have changed, but Oracle defines
them as unchanged results.

Regarding the fact that the value of the actual and expected results never
be fully equal, By defining a threshold value, acceptability or unacceptability of

behzad.zakeri@ut.ac.ir



Software Test Oracle Based on DNN with FIS 415

Table 2. Samples of the mutants

# Original code Mutated code Error type Affected output

1 if(x1 == x2) if(x1 == x3) Variable change 617

2 if(temp ≤ n) if(temp < n) Operator change 811

3 ++Digit Digit++ Operator change 326

4 if(L FB ≥ L Cnt) if(L FB > L Cnt) Operator change 64

the test case results have evaluated. The threshold in this study defined in the
Eq. 16 as follows:

|y − y′| < threshold (16)

The following table illustrates the values of TP, TN, FP, FN and threshold of
the understudy software (Tables 3 and 4):

Table 3. The proposed approach evaluation results

# Threshold # TP # TN # FP # FN

1 0.5 583 4263 71 83

2 200 781 4101 83 37

2 20 547 4293 104 56

3 0.5 311 4628 33 28

4 200 51 4929 13 7

Table 4. Effectiveness of purposed method

# Threshold P TPR FPR TNR FNR ACC FM

1 0.5 0.89 0.87 0.01 0.98 0.12 0.96 0.88

2 200 0.90 0.95 0.01 0.98 0.04 0.97 0.92

2 20 0.84 0.90 0.02 0.97 0.09 0.97 0.87

3 0.5 0.90 0.91 0.00 0.99 0.08 0.98 0.91

4 200 0.79 0.88 0.00 0.99 0.12 0.99 0.83

For evaluation of the Oracle’s results and parameters, the favourable data
science formulas have used [14,15], and define as follow:

– Precision: P = TP
TP+FP

– True Positive Ratio (Sensitivity or Recall): TPR = TP
TP+FN

– False Positive Ratio: FPR = FP
FP+TN

– True Negative Ratio (Specificity): TNR = TN
TN+FP

behzad.zakeri@ut.ac.ir



416 A. K. Monsefi et al.

– False Positive Ratio: FNR = FN
TP+FN

– Accuracy: ACC = TP+TN
TP+TN+FP+FN

– F-Measure: FM = 2×P×TPR
P+TPR

5 Conclusion

In this paper, a new approach to designing software test Oracles by the utility
of deep learning and fuzzy inference system has presented. To assess the perfor-
mance of this architecture in action, a software test Oracle designed and tested
with four different applications. The performance of this Oracle by importing
the error data evaluated. For this purpose, firstly the Oracle trained by correct
data, and then by manipulation in source codes of the applications, performance
of the Oracle in finding the errors has been assessed. It is found that the Oracle
has a high efficiency in detecting the error and also correct data.

The aim of all the proposed test Oracles is detecting the error with the
best accuracy and the minimum human contribution in the process for all types
of the software. Although the proposed test Oracle has acceptable accuracy in
dealing with sample test software, this Oracle has a noticeable weakness. It is
important to note that this Oracle can only be used for software that their
output is numeric, and it cannot tackle with the string or graphical outputs.
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